The Content Analysis Guidebook
CLICK HERE ---> https://urluso.com/2tlA5T
I've waited a long time for the new version of this book. The new additions relating to the content analysis of the online environment are very successful (already in many of my syllabuses for next year). This is undoubtedly a must-read for any methodological course. Excellent reference book for any researcher analyzes content.
Content analysis is one of the most important but complex research methodologies in the social sciences. In The Content Analysis Guidebook author Kimberly Neuendorf provides an accessible core text for upper-level undergraduates and graduate students across the social sciences. Comprising step-by-step instructions and practical advice, this text unravels the complicated aspects of content analysis.
Content analysis is a research tool used to determine the presence of certain words or concepts within texts or sets of texts. Researchers quantify and analyze the presence, meanings and relationships of such words and concepts, then make inferences about the messages within the texts, the writer(s), the audience, and even the culture and time of which these are a part. Texts can be defined broadly as books, book chapters, essays, interviews, discussions, newspaper headlines and articles, historical documents, speeches, conversations, advertising, theater, informal conversation, or really any occurrence of communicative language. Texts in a single study may also represent a variety of different types of occurrences, such as Palmquist's 1990 study of two composition classes, in which he analyzed student and teacher interviews, writing journals, classroom discussions and lectures, and out-of-class interaction sheets. To conduct a content analysis on any such text, the text is coded, or broken down, into manageable categories on a variety of levels--word, word sense, phrase, sentence, or theme--and then examined using one of content analysis' basic methods: conceptual analysis or relational analysis.
Historically, content analysis was a time consuming process. Analysis was done manually, or slow mainframe computers were used to analyze punch cards containing data punched in by human coders. Single studies could employ thousands of these cards. Human error and time constraints made this method impractical for large texts. However, despite its impracticality, content analysis was already an often utilized research method by the 1940's. Although initially limited to studies that examined texts for the frequency of the occurrence of identified terms (word counts), by the mid-1950's researchers were already starting to consider the need for more sophisticated methods of analysis, focusing on concepts rather than simply words, and on semantic relationships rather than just presence (de Sola Pool 1959). While both traditions still continue today, content analysis now is also utilized to explore mental models, and their linguistic, affective, cognitive, social, cultural and historical significance.
Perhaps due to the fact that it can be applied to examine any piece of writing or occurrence of recorded communication, content analysis is currently used in a dizzying array of fields, ranging from marketing and media studies, to literature and rhetoric, ethnography and cultural studies, gender and age issues, sociology and political science, psychology and cognitive science, and many other fields of inquiry. Additionally, content analysis reflects a close relationship with socio- and psycholinguistics, and is playing an integral role in the development of artificial intelligence. The following list (adapted from Berelson, 1952) offers more possibilities for the uses of content analysis:
In this guide, we discuss two general categories of content analysis: conceptual analysis and relational analysis. Conceptual analysis can be thought of as establishing the existence and frequency of concepts most often represented by words of phrases in a text. For instance, say you have a hunch that your favorite poet often writes about hunger. With conceptual analysis you can determine how many times words such as hunger, hungry, famished, or starving appear in a volume of poems. In contrast, relational analysis goes one step further by examining the relationships among concepts in a text. Returning to the hunger example, with relational analysis, you could identify what other words or phrases hunger or famished appear next to and then determine what different meanings emerge as a result of these groupings.
Traditionally, content analysis has most often been thought of in terms of conceptual analysis. In conceptual analysis, a concept is chosen for examination, and the analysis involves quantifying and tallying its presence. Also known as thematic analysis [although this term is somewhat problematic, given its varied definitions in current literature--see Palmquist, Carley, & Dale (1997) vis-a-vis Smith (1992)], the focus here is on looking at the occurrence of selected terms within a text or texts, although the terms may be implicit as well as explicit. While explicit terms obviously are easy to identify, coding for implicit terms and deciding their level of implication is complicated by the need to base judgments on a somewhat subjective system. To attempt to limit the subjectivity, then (as well as to limit problems of reliability and validity), coding such implicit terms usually involves the use of either a specialized dictionary or contextual translation rules. And sometimes, both tools are used--a trend reflected in recent versions of the Harvard and Lasswell dictionaries.
Conceptual analysis begins with identifying research questions and choosing a sample or samples. Once chosen, the text must be coded into manageable content categories. The process of coding is basically one of selective reduction. By reducing the text to categories consisting of a word, set of words or phrases, the researcher can focus on, and code for, specific words or patterns that are indicative of the research question.
An example of a conceptual analysis would be to examine several Clinton speeches on health care, made during the 1992 presidential campaign, and code them for the existence of certain words. In looking at these speeches, the research question might involve examining the number of positive words used to describe Clinton's proposed plan, and the number of negative words used to describe the current status of health care in America. The researcher would be interested only in quantifying these words, not in examining how they are related, which is a function of relational analysis. In conceptual analysis, the researcher simply wants to examine presence with respect to his/her research question, i.e. is there a stronger presence of positive or negative words used with respect to proposed or current health care plans, respectively.
The following discussion of steps that can be followed to code a text or set of texts during conceptual analysis use campaign speeches made by Bill Clinton during the 1992 presidential campaign as an example. To read about each step, click on the items in the list below:
Relational analysis, like conceptual analysis, begins with the act of identifying concepts present in a given text or set of texts. However, relational analysis seeks to go beyond presence by exploring the relationships between the concepts identified. Relational analysis has also been termed semantic analysis (Palmquist, Carley, & Dale, 1997). In other words, the focus of relational analysis is to look for semantic, or meaningful, relationships. Individual concepts, in and of themselves, are viewed as having no inherent meaning. Rather, meaning is a product of the relationships among concepts in a text. Carley (1992) asserts that concepts are \"ideational kernels;\" these kernels can be thought of as symbols which acquire meaning through their connections to other symbols.
The kind of analysis that researchers employ will vary significantly according to their theoretical approach. Key theoretical approaches that inform content analysis include linguistics and cognitive science.
Linguistic approaches to content analysis focus analysis of texts on the level of a linguistic unit, typically single clause units. One example of this type of research is Gottschalk (1975), who developed an automated procedure which analyzes each clause in a text and assigns it a numerical score based on several emotional/psychological scales. Another technique is to code a text grammatically into clauses and parts of speech to establish a matrix representation (Carley, 1990).
As with other sorts of inquiry, initial choices with regard to what is being studied and/or coded for often determine the possibilities of that particular study. For relational analysis, it is important to first decide which concept type(s) will be explored in the analysis. Studies have been conducted with as few as one and as many as 500 concept categories. Obviously, too many categories may obscure your results and too few can lead to unreliable and potentially invalid conclusions. Therefore, it is important to allow the context and necessities of your research to guide your coding procedures.
The steps to relational analysis that we consider in this guide suggest some of the possible avenues available to a researcher doing content analysis. We provide an example to make the process easier to grasp. However, the choices made within the context of the example are but only a few of many possibilities. The diversity of techniques available suggests that there is quite a bit of enthusiasm for this mode of research. Once a procedure is rigorously tested, it can be applied and compared across populations over time. The process of relational analysis has achieved a high degree of computer automation but still is, like most forms of research, time consuming. Perhaps the strongest claim that can be made is that it maintains a high degree of statistical rigor without losing the richness of detail apparent in even more qualitative methods. 59ce067264
https://www.bicytp.com/group/questions-and-answers/discussion/4a578d66-c068-4219-b612-11b1d9fcbc46